Linear
Linear(input_layer: Layer, n_units, shape=None add_bias=True)
Fully connected layer that implements a linear transformation of the form f(x) = Wx + b
Args
- input_layer (Layer) : input layer or a value convertible to Layer
- n_units (int) : output dim
- weights_shape  : weights shape, needed if n_unitsandinput_layer.n_unitsis not known.
- weight_init (Callable) : weights (W) initializer function
- bias_init (Callable) : bias initializer function
- weights (tf.Variable) : variable to be used as linear weights
- bias (tf.Variable) : variable to be used as a bias
- add_bias (`bool) : if True, this layers becomes an affine transformation layer xW+b
- transpose_weights (bool) : ifTrue, transposes the weights
- sparse_weights (bool) : if True indicates we are using a sparse tensor instead of a tf.Variable for weights
- weight_norm (bool) : if True weights are normalised
- dtype (tf.DType) : type for layer variables
- name (str) : layer name
- share_state_with (Linear or None) : Linear layer with which we wish to share the state
Methods:
.compute_shape
.compute_shape()
.init_state
.init_state()
.compute
.compute(
   input_tensor
)
.reuse_with
.reuse_with(
   input_layer, name = None, transpose_weights = None, sparse_weights = None,
   shape = None
)
Reuses the current layer on a different input.
 source
source