Linear
Linear(input_layer: Layer, n_units, shape=None add_bias=True)
Fully connected layer that implements a linear transformation of the form f(x) = Wx + b
Args
- input_layer (
Layer
) : input layer or a value convertible to Layer - n_units (
int
) : output dim - weights_shape : weights shape, needed if
n_units
andinput_layer.n_units
is not known. - weight_init (
Callable
) : weights (W) initializer function - bias_init (
Callable
) : bias initializer function - weights (
tf.Variable
) : variable to be used as linear weights - bias (
tf.Variable
) : variable to be used as a bias - add_bias (`bool) : if True, this layers becomes an affine transformation layer xW+b
- transpose_weights (
bool
) : ifTrue
, transposes the weights - sparse_weights (
bool
) : if True indicates we are using a sparse tensor instead of a tf.Variable for weights - weight_norm (
bool
) : if True weights are normalised - dtype (
tf.DType
) : type for layer variables - name (
str
) : layer name - share_state_with (
Linear or None
) : Linear layer with which we wish to share the state
Methods:
.compute_shape
.compute_shape()
.init_state
.init_state()
.compute
.compute(
input_tensor
)
.reuse_with
.reuse_with(
input_layer, name = None, transpose_weights = None, sparse_weights = None,
shape = None
)
Reuses the current layer on a different input.