BaseRNNCell
BaseRNNCell(
input_layer, previous_state, state_size, n_units, dtype = tf.float32,
w_init = glorot_uniform_init(), u_init = glorot_uniform_init(),
bias_init = zeros_init(), activation = tf.tanh, w_dropconnect = None,
u_dropconnect = None, x_dropout = None, r_dropout = None, y_dropout = None,
dropout_locked = True, regularized = False, share_state_with = None,
name = 'recurrent_cell'
)
Args
- previous_state : the recurrent input Layer for the cell
- state_size : list of number of units for each element in the state, default is a single state with [n_units]
- n_units (
int
) : number of activation units for the RNN cell - dtype : Layer (output) dtype input_layer the input Layer for this cell
Methods:
.compute_shape
.compute_shape()
.reuse_with
.reuse_with(
input_layer, *previous_state, regularized = None, name = None, **kwargs
)