RNNCell
RNNCell(
   input_layer, n_units, previous_state = None, activation = tf.tanh,
   w_init = tf.initializers.glorot_uniform(),
   u_init = tf.initializers.glorot_uniform(), bias_init = tf.initializers.zeros(),
   share_state_with = None, w_dropconnect = None, u_dropconnect = None,
   r_dropout = None, x_dropout = None, y_dropout = None, dropout_locked = True,
   regularized = False, name = 'rnn_cell'
)
Recurrent Cell Corresponds to a single step on an unrolled RNN network
Args
- input_layer : the input layer to the RNN Cell
 - n_units : number of output units for this RNN Cell
 - previous_state : a RNNCell from which we can extract output
 - activation : activation function to be used in the cell
 - share_state_with  : a 
Layerwith the same number of units than this Cell - name  : name for the RNN cell
share_state_with (
RNNCell or None): 
Methods:
.init_state
.init_state()
.compute
.compute(
   input_layer, *previous_state
)
source